
 [Sharma, 2(2): April-June, 2012] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 2, Issue 2: April-June: 2012, 175-179

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES
&

MANAGEMENT

AREA OPTIMIZED FSM BASED BIST
Sonal Sharma*1,Vishal Moyal2

*1,2SSITM, Bhilai (C.G.)

Abstract
This paper proposed the structured design methodology to construct FSM based programmable memory BIST
approach for testing memory modules in SOC (system on chip). The BIST architecture could be used to test
memories in different stage of their fabrication and therefore result in lower overall memory test logic overhead.
The proposed scheme supports various memory test algorithms which are used to test different types of memory
modules in SOC. We show that proposed FSM based BIST architecture achieves a good flexibility with smaller
circuit size compared with previous methods.

Keywords — BIST, SOC, Programmable memory.

Introduction
In present scenario semiconductor memory testing
plays a vital role in computer system design and
diagnosis. There are few very good reasons why
memory testing deserves special attention. First,
memory is essential to electronic products. Almost
all system chips contain some type of embedded
memory, such as ROM, SRAM, DRAM, and flash
memory. Second, dynamic increment in circuit
complexity and device density of memory chips
alike all other digital circuits which makes
memory testing more and more complicated due to
appearance of the new defect mechanisms in
memory devices and constraints of fault coverage
and the time spent on the test procedure. An FSM
based programmable memory BIST controller
architecture, was proposed in earlier. It gives users
the selection of test algorithms on-line. When
proposed method compared with previous
programmable BIST designs, it achieves roughly
the same level of flexibility, detects more faults and
high frequency. And also it reduces area (gate
count) without disturbing the speed The proposed
method will be very useful in SOC testing, since
many different memory core modules (e.g.,
DRAM,S since many different memory core
modules (e.g., DRAM,SRAM and ROM) may be
employed in SOC and they require different test
algorithms.

* Corresponding Author
E. mail: sonal.sharma30@gmail.com

This paper presents algorithms for different test
patterns, surveys of current memory BIST
architecture, and discussion of various
implementation issues. The paper is organized as
follows: Section 2 describes the BIST algorithms of
various memory tests. Section 3 present novel
design aspects in memory BIST and respective
simulation results. The conclusions are offered in
Section 4.

BIST algorithm for various memory tests
There are many efficient testing algorithms have
been proposed to detect different fault models [2].
Though implementing various testing algorithms in
a single P-MBIST design would require high area
cost. In our work, we maintained low area without
disturbing the speed Traditionally P-MBIST
architecture consists of following hardware units:
MUX -- the set of multiplexers or another
wrappers, which are used to isolate RAM module
under test from external devices; TAP(WSP)-
controller provides the serial communication
between P-MBIST hardware and external devices
and ATE (usually IEEE 1149.1 or P1500)
interfaces are used) [3], [4]; FSM -- is a central
core of PMBIST hardware, which controls all main
units and executes the predefined memory test
algorithm; MM -- micro program memory unit,
which stores the test in binary format; RI -
additional unit.

 [Sharma, 2(2): April-June, 2012] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 2, Issue 2: April-June: 2012, 175-179

Figure1: Block diagram of BIST operation

Memory test is a set of basic operations
performed on a Memory module to determine
functionality. There is wide range of functional
memory tests [5]. One type of tests that proven
to be practically effective in time and
complexity is the March test [6]. Any March
test for bit oriented RAM can be defined by the
set of primitives of MTL language:

1) The set of basic operations r0, r1, w0, w1,
where r means read operation and w - write
operation of predefined values 0(1) for the
memory cell with current value of address a;
2) March element (test phase) - the concrete
finite sequence of basic operations applied for
current memory cell :(r0, w1, r1);
3) Each march element has addressing order,
which denotes the direction of address space
transmission: symbol ⇑denotes addressing order
from 0 to 2m −1 , symbol ⇓denotes backward
addressing order from 2m −1 to 0 and symbolic
is used when the addressing order is irrelevant;
for example the first march element of all tests
looks like c(w0) ;
4) The finite set of different march elements
forms complete march test; for instance, march
test MATS++ can be written as {c (w0); ⇑(r0,
w1); ⇓(r1, w0, r0)} .
In order to verify whether a given memory cell
is good, it is necessary to conduct a sequence of
write and read operations to the cell. The actual
number of read/write operations and the order
of the operations depend on the target fault
model. Most commonly used memory test
algorithms are March tests, in which there are
finite sequences of March elements. A March
element is a finite sequence of read (r) or writes
(w) operations applied to a cell in memory
before processing the next cell. The address of
the next cell can be in either ascending or
descending address order. The notations are
summarized in the table shown below:

Table1: Notations of operations

r A Read Operation

w A Write Operation

 Up addressing order

 Down addressing order

 Any addressing order

When an algorithm reads a cell response will be
either 0 or 1 and they are denoted as r0 and r1
respectively. similarly write 0(1) into a cell is
denoted as w1(w0) .we show commonly used test
algorithm in table with above notation For
example, the MATS+ algorithm first writes a 0 to
each cell in any order ((w0)). In the second March
element, it first verifies if the content in a given cell
is 0, and then writes a 1 into the same cell. The
process is conducted from address 0 up to the last
memory cell ((r0, w1)). In the last March element,
the algorithm verifies if the content of a cell is 1
and then write 0 back to the cell, for all cells
starting from the last one down to address 0 ((r1,
w0)).
From Table2, we can see that different test
algorithms may have the same march elements, and
thus we can design a simple and flexible BIST
controller with shared components. In table2, the
number of the first column indicates an algorithm,
which is selected and sent by ATE. The proposed
BIST supports 8 algorithms. Therefore, the
selection number has 3 bits and indicates each
supportable algorithm. Each algorithm consists of
some codes. The code means a March element and
has five-bits. The most significant bit of March
element code means address order.

If the bit is set “0”, address is generated in
decreasing order. Else address is made in
increasing order. Rest bits of March element code
indicate read/write operation. For example, a code
“1000” is reading “0”from memory, writing “1”
and writing “0”to memory in regular sequence.
There are total 35 march elements. However, we
can express all algorithms using only 14 codes.
Because same March elements share same code.

Table2: Memory test algorithms

 [Sharma, 2(2): April-June, 2012] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 2, Issue 2: April-June: 2012, 175-179

Let us determine the basic operations in terms of
notation. It is necessary to note that each read
operation r (dt∈{0,1}) consists of two micro
operations: reading he value d from selected
memory cell and comparison the value d with the
reference value dt:{1, X , a, X ,1}⇒{ d}, CMP (d ,
dt) . (5)The basic write operation w (dt∈{0,1}) dt
will be written as{1,0 →1, a, dt,0}⇒{ Z} . (6)Each
basic operation belongs to specified march element.
All operations from current march element are
performed sequentially for selected memory cell.
When last operation from March element will be
completed then the current value of address will be
changed according to the specified addressing
order. For this reason we denote two markers for all
basic operations: AO - Address Order and LO –
Last Operation. Also we add these markers to the
notation of basic operations 1:[AO, LO]{ Inputs
}⇒{ Output _ Data } . (7)Classical March tests are
designed to detect different types of faults. All
March tests are able to detect single-cell faults of
different multiplicity, but not all of them are able to
detect single faults, which affect more than one cell
[6].At first case only two types of addressing order
can be used: ⇑and ⇓. All three types of addressing
order are used by multi run March tests to detect
multiple-cell faults.

 If Wr_comp=1

 If bits_En=1 If Wr_comp=1

 If Wr_comp=1

Figure2: Mats+ Algorithm

The first state of this algorithm is “Idle” state
,indicating that ,there is not any BIST operation is
performed Mats+ algorithm will be in “Idle” state
unless BIST_EN signal is remain Equal to “0” .The
BIST operation start as soon as BIST_EN signal is
made equal to “1” then in this algorithm the first
operation is “ W0 “ which means that there is write
0” operation is to be performed hence “S0” is the
first state in which write “0” operation when
“write_complite” signal equal to “1” then FSM
entered in new state “S1” . In “S1” state there is
two element One is r0 and another W1 .When write
one operation is performed then “write complete”
signal become equal to “1” then FSM will switch to
“S2” State .where in two operation required to be
performed Read one and write Zero .Thus when the
last operation is completed then FSM will switch to
idle state.

Figure3: Marchc minus Algorithm

In the fig FSM of March C Minus algorithm has
been shown In which the first state “idle” which
shows that this memory BIST is not working
.whenever BIST_En is made Equal to “1” then the
first operation of this algorithm is performed in
form of “Write 0” operation this operation is
defined by “the S0” state when write complete
signal is made Equals to “1” then FSM switch to
the “S1” state this state is having two elements so
two operation is needed to be performed so as soon
as second operation of this state of this state is
performed then “Write complete 1” signal gets
Equal to “1” results in FSM switches to the third
state hence all operation of this state are performed
in same manner a. finally idle state is achieved
when last operation of this state is performed.

Simulation Results

No

Algor
ithm

March Elements Code

000 MAT
S+

{_(w0); _(r0,w1); _(r1,w0)}

001 March
X

{_(w0); _(r0,w1); _(r1,w0); _(r0)}

010 March
C-

{_(w0); _(r0,w1); _(r1,w0);
_(r0,w1); _(r1,w0); _(r0)}

011 March
A

{�(w0);�(r0,w1,w0,w1);�(r1,w0,w
1);

100 March
B

{_(w0); _(r0,w1,r1,w0,r0,w1);
_(r1,w0,w1);

_(r1,w0,w1,w0); _(r0,w1,w0)}
101 March

U
{_(w0); _(r0,w1,r1,w0); _(r0,w1);

_(r1,w0,r0,w1); _(r1,w0)}

110 March
LR

{_(w0); _(r0,w1); _(r1,w0,r0,w1);
_(r1,w0);

_(r0,w1,r1,w0); _(r0)}
111 March

SS
{_(w0);_(r0,r0,w0,r0,w1);_(r1,r1,w1
,r1,w0);
(r0,r0,w0,r0,w1);(r1,r1,w1,r1,w0);
_(r0)}

Ideal S1

S2 S0

 [Sharma, 2(2): April-June, 2012] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 2, Issue 2: April-June: 2012, 175-179

For the efficiency of the proposed method, we
implement proposed BIST. And we construct the
RTL programmable MBIST (PMBIST) model for
those algorithms.

Figure4: MrchSS Algorithm

In the fig FSM of March SS algorithm has been
shown In which the first state “idle” which shows
that this memory BIST is not working .whenever
BIST_En is made Equal to “1” then the first
operation of this algorithm is performed in form of
“Write 0” operation this operation is defined by
“the S0” state when “write complete 0” signal is
made Equal to “1” then FSM then switch to the
“S1” state this state is having 4 elements so four
operation is needed to be performed when is the
first operation of this Algorithm is performed the
counter ,along with this operation is increased by
one to define that first of two identical operation is
performed (the counter is provided as there are two
identical operation consecutively given)so as soon
as fifth operation of this state of this state is
performed then “Write complete 1” signal gets
Equal to “1” results in FSM switches to the third
state hence all operation of this state are performed
in same manner a. finally idle state is achieved
when last operation of this state is performed
In the first experiment, we synthesize the PMBIST
with Xilinx ISE 8.1i. To prove the better
performance and area utilization, Table 3 has been
shown.
Here in simulation we are showing the Faulty FSM
BIST in which test input of 8 bit has been given to
FSM BIST also “001” has been shown by “sel”
signal to the MATS+ in which 1 test vector “0”
needs to be written and “0” all eight location is
written for 64 counts after which algorithm will be
changed to next state.

Table 3: Result

Algorithm Gate Count
of Previous

Gate Count
of Proposed

method method

MATS+ 730 216

March X 768 241

March C- 762 281

March B 1,038 1,215

March Lr NI 905

March U NI 885

March SS NI 651

Figure5:Simulation of faulty FSM BIST

In this simulation ‘sel’ line is 000 is given to select
the Mats+ algorithm in which S1 state is showing
the read 0 operation during which output from
RAM is transferred to comparator in test data to
comparator is given as “1” hence stuck at 0 fault is
being shown in this simulation

Figure6: RTL view of fault detect

Figure 7: FINAL IMPLEMENTATION

 [Sharma, 2(2): April-June, 2012] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 2, Issue 2: April-June: 2012, 175-179

Conclusion
We have implemented the FSM BIST by Finite
state machine. We also compare the two FSM
BIST in terms of gate count and power dissipation.
The next thing we can do is to implement the Logic
BIST.

References

1. P. H. Bardell, W. H. McAnney, and J.
Savir. Built-In Test for VLSI:
Pseudorandom Techniques. Wiley
Interscience,

2. V. D. Agrawal, C. R. Kime, and K. K.
Saluja, “A tutorial on built –test
Principles,” IEEE Design & Test of
Computers, Vol. 10, No. 2, pp. 69 77,
March 1993.

3. J. van de Goor, Testing Semiconductor
Memories: Theory and Practice, John
Wiley and Sons, U.S.A., 1991.
Proceedings.

4. A. J. van de Goor and A. Offerman,
“Towards a uniform notation for memory
tests,” in Proc. European Design and Test
Conf., pp. 420-427,1996.

5. V. G. Mikitjuk, V. N. Yarmolik and A. J.
van de Goor, “RAM testing algorithms for
detecting multiple linked faults,” in Proc.
EuropeanDesign and Test Conf., pp. 435-
439, 1996.

6. H. Bardell and W. H. McAnney, “Built-in
test for RAMs,” IEEE Design & Test of
Computers, Vol. 5, No. 4, pp. 29-36, Aug
1988

7. WonGi Hong, Jung Dai Choi, Hoon
Chang, “A Programmable Memory BIST”
for Embedded 2008 International SoC
Design Conference.

8. Balwinder singh , Sukhleen Bindra
Narang, and Arun Khosla on “Address
Counter / Generators for Low Power
Memory BIST” IJCSI International
Journal of Computer Science Issues, Vol.
8, Issue 4, No 1, July 2011.

9. R. Nair, S. Thatte, and J. Abraham.
E_cient algorithms for Random Access
Memories. In IEEE Trans. on Computers,
pages 572{576, June 1978.

